Home
Class 12
MATHS
Let z be any non-zero complex number. Th...

Let z be any non-zero complex number. Then pr. arg(z) + pr.arg`(barz)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z be any non-zero complex number. Then arg(z) + arg (barz) is equal to

Let z be any non zero complex number then arg z + arg barz =

If z is a non -zero complex number then (|barz|^(2))/(zbarz) is equal to

If z is a non zero complex, number then |(|barz |^2)/(z barz )| is equal to (a). |(barz )/z| (b). |z| (c). |barz| (d). none of these

Let (z, w) be two non-zero complex numbers. If z +i w = 0 and arg (z w) = pi , then arg z is equal to a) pi b) (pi)/(2) c) (pi)/(4) d) (pi)/(6)

If arg(z) lt 0 , then arg(-z)-arg(z) is equal to

If Z= -1+i be a complex number .Then Arg(Z) is equal to

Let z and w be two non-zero complex number such that |z|=|w| and arg (z)+arg(w)=pi then z equals.w(b)-w (c) w(d)-w

If Z =−1 + і be a complex number .Then Arg(Z) is equal to