Home
Class 12
MATHS
If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,...

If `u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v)` is `3/2xcosx^3cos e cx^2` `2/3sinx^3secx^2` `tanx` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is a)3/2xcosx^3cos e cx^2 b)2/3sinx^3secx^2 c)tanx (d) none of these

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is (a) 3/2xcosx^3cos e cx^2 (b) 2/3sinx^3secx^2 (c) tanx (d) none of these

If u=f(x^3),v=g(x^2),f'(x)=cosx, and g'(x)=sinx, then (du)/(dv) is

If u = f(x^2) , v = g(x^3), f^(1)(x) = sinx , g^(1)(x) = cos x then find (du)/(dv)

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of lim_(x->0)(((dy)/(dz)))/x

If u=f(x^2), v=g(x^3) , f'(x)=sinx and g'(x)= cos x then find (du) / (dv) .

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of (lim)_(xvec0)(((dy)/(dz)))/x

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of (lim)_(xvec0)(((dy)/(dz)))/x

If f(x)=|x-2| a n d g(x)=f[f(x)],t h e n g^(prime)(x)= ______ for x>20