Home
Class 12
MATHS
If the complex numbers z(1),z(2),z(3) ar...

If the complex numbers `z_(1),z_(2),z_(3)` are in AP, then they lie on

Promotional Banner

Similar Questions

Explore conceptually related problems

If the complex numbers z_(1),z_(2),z_(3) represents the vertices of an equilaterla triangle such that |z_(1)|=|z_(2)|=|z_(3)| , show that z_(1)+z_(2)+z_(3)=0

If for the complex numbers z_(1) and z_(2)

If the complex numbers z_(1), z_(2), z_(3) represent the vertices of an equilateral triangle, and |z_(1)|= |z_(2)| = |z_(3)| , prove that z_(1)+ z_(2) + z_(3)=0

If the complex numbers z_(1), z_(2)" and "z_(3) denote the vertices of an isoceles triangle, right angled at z_(1), " then "(z_(1)-z_(2))^(2)+(z_(1)-z_(3))^(2) is equal to

If (z_(3)-z_(1))/(z_(2)-z_(1)) is a real number, show that the points represented by the complex numbers z_(1),z_(2),z_(3) are collinear.

Show that if z_(1)z_(2)+z_(3)z_(4)=0 and z_(1)+z_(2)=0 ,then the complex numbers z_(1),z_(2),z_(3),z_(4) are concyclic.

Show that if z_(1)z_(2)+z_(3)z_(4)=0 and z_(1)+z_(2)=0 ,then the complex numbers z_(1),z_(2),z_(3),z_(4) are concyclic.