Home
Class 10
MATHS
यदि u(x)=(x-1)^(2) तथा v(x)=(x^(2)-1) ...

यदि `u(x)=(x-1)^(2)` तथा `v(x)=(x^(2)-1)` हो तो सम्बन्ध `LCMxxHCF=u(x)xxv(x)` की सत्यता की जांच कीजिये।

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(u)/(v) then f'(x)=(1)/(v^(3))

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is :

यदि (x/3+1,y-2/3) = (5/3,1/3) हो, तो x और y का माना ज्ञात , कीजिये।

If u=tan^(-1)""(sqrt(1+x^(2))-1)/x " and " v=tan^(-1)x, " find " (du)/(dv) .

If u= log (1+x^(2)) and v=x -tan ^(-1) x,then(dy)/(dx) =

Find the polynomials u(x) and v(x) such that (x^(4) -1) * u(x) + (x^(7) -1) * v(x) = (x-1) .

If u = log ((x ^ (2) + y ^ (2)) / (x + y)), prove that x (u) / (x) + y (u) / (y) = 1