Home
Class 12
MATHS
If |x| le 1, then 2tan^(-1)x + sin^(-1)...

If `|x| le 1`, then ` 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2)))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If |x|le1 , then 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) is equal to _____

If |x| le 1 , then 2 tan^-1 x + sin^-1 ((2x)/(1+x^2)) is equal to

If absxle1,"then"2tan^(-1)x-sin^(-1)""(2x)/(1+x^(2)) is equal to

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2))) , 1 le x le 1