Home
Class 12
MATHS
The function f(x)=x(x+4)e^(-x//2) has i...

The function `f(x)=x(x+4)e^(-x//2)` has its local maxima at `x=adot` Then (a)`a=2sqrt(2)` (b) `a=1-sqrt(3)` (c)`a=-1+sqrt(3)` (d) `a=-4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=x(x+4)e^(-x/2) has its local maxima at x=a* Then (a)a=2sqrt(2)(b)a=1-sqrt(3)(c)a=-1+sqrt(3)(d)a=-4

The function f(x)=(ax+b)/((x-1)(x-4)) has a local maxima at (2,-1), then

If mean value theorem holds good for the function f(x)=(x-1)/(x) on the interval [1,3] then the value of 'c' is 2 (b) (1)/(sqrt(3))( c) (2)/(sqrt(3))(d)sqrt(3)

If f(x)=sin^2x and the composite function g(f(x))=|sinx| , then g(x) is equal to (a) sqrt(x-1) (b) sqrt(x) (c) sqrt(x+1) (d) -sqrt(x)

The greatest value of the function f(x)=(sin2x)/(sin(x+(pi)/(4))) on the interval (0,(pi)/(2)) is (1)/(sqrt(2))(b)sqrt(2)(c)1(d)-sqrt(2)

The values of parameter a for which the point of minimum of the function f(x)=1+a^2x-x^3 satisfies the inequality (x^2+x+2)/(x^2+5x+6)<0a r e (a) (2sqrt(3),3sqrt(3)) (b) -3sqrt(3),-2sqrt(3)) (c) (-2sqrt(3),3sqrt(3)) (d) (-2sqrt(2),2sqrt(3))

The values of parameter a for which the point of minimum of the function f(x)=1+a^2x-x^3 satisfies the inequality (x^2+x+2)/(x^2+5x+6)<0a r e (a) (2sqrt(3),3sqrt(3)) (b) -3sqrt(3),-2sqrt(3)) (c) (-2sqrt(3),3sqrt(3)) (d) (-2sqrt(2),2sqrt(3))

The values of parameter a for which the point of minimum of the function f(x)=1+a^2x-x^3 satisfies the inequality (x^2+x+2)/(x^2+5x+6)<0a r e (a) (2sqrt(3),3sqrt(3)) (b) -3sqrt(3),-2sqrt(3)) (c) (-2sqrt(3),3sqrt(3)) (d) (-2sqrt(2),2sqrt(3))

f(x)=(x-1)|(x-2)(x-3)|dot Then f decreases in (a) (2-1/(sqrt(3)),2) (b) (2,2+1/(sqrt(3))) (c) (2+1/(sqrt(3)),4) (d) (3,oo)

f(x)=(x-1)|(x-2)(x-3)|dot Then f decreases in (a) (2-1/(sqrt(3)),2) (b) (2,2+1/(sqrt(3))) (c) (2+1/(sqrt(3)),4) (d) (3,oo)