Home
Class 12
MATHS
If M = [[0,2],[5,0]] and N = [[0,5],[2,0...

If `M = [[0,2],[5,0]]` and `N = [[0,5],[2,0]]`then `M^(2011)` is,

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that M=[(3,-2),(-4,0)] and N=[(-2,2),(5,0)] then M+N is a

If M=[{:(,0),(,1):}] and N=[{:(,1),(,0):}] show that 3M+5N=[{:(,5),(,3):}]

0.5m=0.65,then m=

If sin A + cos A = m and sin^3 A + cos^3A=n , then (1) m^3-3m + n = 0 (2) n^3-3n + 2m=0 (3) m^3-3m + 2n = 0 (4) m3 + 3m + 2n = 0

If sin A + cos A = m and sin^3 A + cos^3A=n , then (1) m^3-3m + n = 0 (2) n^3-3n + 2m=0 (3) m^3-3m + 2n = 0 (4) m3 + 3m + 2n = 0

If sin A + cos A = m and sin^3 A + cos^3A=n , then (1) m^3-3m + n = 0 (2) n^3-3n + 2m=0 (3) m^3-3m + 2n = 0 (4) m^3 + 3m + 2n = 0

If M is a 3xx3 matrix such that (0 1 2)M = (1 0 0), (3 4 5) M = (0 1 0), then (6 7 8)M is equal to

If A =[{:(2,0,0),(0,3,0),(0,0,5):}] , prove that, A^(2)=[{:(2^(2),0,0),(0,3^(2),0),(0,0,5^(2)):}] , hence by induction method show that, A^(n)=[{:(2^(n),0,0),(0,3^(n),0),(0,0,5^(n)):}]

Explain , giving reason , which of the following sets of quantum number are not possible {:(a,n= 0 ,l = 0, m_(1) = 0, m_(s) = +1//2),(b,n= 1 ,l = 0, m_(1) = 0, m_(s) = -1//2),(c,n= 1 ,l = 0, m_(1) = 0, m_(s) = +1//2),(d,n= 2 ,l = 1, m_(1) = 0, m_(s) = -1//2),(e,n= 3 ,l = 3, m_(1) = -3, m_(s) = +1//2),(f,n= 3 ,l = 1, m_(1) = 0, m_(s) = +1//2):}