Home
Class 12
MATHS
Statement - 1: The value of ((20),(0))((...

Statement - 1: The value of `((20),(0))((20),(1))-((20),(1))((20),(9))+((20),(2))((20),(8))-((20),(3))((20),(7))+...+((20),(10))((20),(0))=0`, where `((n),(r))=^nC_r` Statement - 2: `.^nC_0-^nC_1+^nC_2-^nC_3+...+(-1)^n .^nC_n=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ""^0C_0-^nC_1+^nC_2-....+ -1^(n^n)C_n is

Prove that ""^nC_0-2*""^nC_1+3*""^nC_2-...+(-1)""^n(n+1)""^nC_n=0

The value of nC_0. ^nC_n +^nC_1 . ^nC_(n-1)++……..+^nC_n . ^nC_0

Show that : ""^nC_0*m-""^nC_1*(m-1)+""^nC_2*(m-2)-...+(-1)^n*""^nC_n*(m-n)=0

Prove that ^nC_0-^nC_1+^nC_2-^nC_3+....+(-1)^r ^C_r+....=(-1)^(r-1) ^(n-1)C_(r-1)

(nC_(0))^(2)+(nC_(1))^(2)+(nC_(2))^(2)+......+(nC_(n))^(2)

1/2. ""^nC_0 + ""^nC_1 + 2. ""^nC_2 + 2^2. ""^nC_3 + …….+ 2^(n-1) . ""^nC_n =

1/2. ""^nC_0 + ""^nC_1 + 2. ""^nC_2 + 2^2. ""^nC_3 + …….+ 2^(n-1) . ""^nC_n =

Prove that (2nC_0)^2-(2nC_1)^2+(2nC_2)^2+.....+(2nC_2n)^2=(-1)^n2nC_n

Prove that (2nC_0)^2+(2nC_1)^2+(2nC_2)^2-+(2nC_(2n))^2=(-1)^n2nC_ndot