Home
Class 12
MATHS
The tangent at point P on the ellipse x^...

The tangent at point P on the ellipse `x^(2)/a^(2) + y^(2)/b^(2) = 1` cuts the minor axis in Q and PR is drawn perpendicular to the minor axis. If C is the centre of the ellipse, then `CQ*CR =`

Promotional Banner

Similar Questions

Explore conceptually related problems

The tangent at P on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 cuts the major axis in T and PN is the perpendicular to the x -axis, C being centre then CN.CT

The tangent at 'p' on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 cuts the major axis in T and PN is the perpendicular to the x-axis, C being centre then CN.CT =

The ellipse (x^(2))/(25)+(y^(2))/(16)=1 with the major and minor axis in M and m respectively is

P and Q are the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and B is an end of the minor axis. If P B Q is an equilateral triangle, then the eccentricity of the ellipse is

If the normal at a point P on the ellipse (x^(2))/(144)+(y^(2))/(16)=1 cuts major and minor axes at Q and R respectively.Then PR:PQ is equal to

Chords of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 are drawn through the positive end of the minor axis. Then prove that their midpoints lie on the ellipse.

If PN is the ordinate of a point P on the ellipse x^2/a^2+y^2/b^2=1 and the tangent at P meets the x-axis at T then show that (CN) (CT)= a^2 where C is the centre of the ellipse.