Home
Class 11
MATHS
Let g(x) be a function defined on [-1,1]...

Let g(x) be a function defined on [-1,1]. If the area of the equilateral triangle with two of its vertices at `(0,0)` and `(x,g(x))` is `sqrt(3)/4`.then the function g(x) is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x) be a function defined on [-1,1]dot If the area of the equilateral triangle with two of its vertices at (0,0) a n d (x ,g(x)) is (sqrt(3))/4 , then the function g(x) is (b) g(x)=+-sqrt(1-x^2) (c) g(x)=sqrt(1-x^2) (d) g(x)=-sqrt(1-x^2) (a) g(x)=sqrt(1+x^2)

Let g(x) be a function defined on [-1,1]dot If the area of the equilateral triangle with two of its vertices at (0,0)a n d(x ,g(x)) is (sqrt(3))/4 , then the function g(x) is g(x)=+-sqrt(1-x^2) g(x)=sqrt(1-x^2) g(x)=-sqrt(1-x^2) g(x)=sqrt(1+x^2)

Let g(x) be a function defined on [-1,1] .If the area of the equilateral triangle with two of its vertices at (0,0) a n d(x,g(x)) is (a) (sqrt(3))/(4) then the function g(x) is (b) g(x)=+-sqrt(1-x^(2))(cx)=sqrt(1-x^(2))(d)g(x)=-sqrt(1-x^(2))g(x)=sqrt(1+x^(2))(d)

Let g(x) be a function defined on [-1,1]dot If the area of the equilateral triangle with two of its vertices at (0,0) a n d (x ,g(x)) is (a) (sqrt(3))/4 , then the function g(x) is (b) g(x)=+-sqrt(1-x^2) (c) g(x)=sqrt(1-x^2) (d) g(x)=-sqrt(1-x^2) g(x)=sqrt(1+x^2)

Let g(x) be a function defined on [-1,1]dot If the area of the equilateral triangle with two of its vertices at (0,0) a n d (x ,g(x)) is (a) (sqrt(3))/4 , then the function g(x) is (b) g(x)=+-sqrt(1-x^2) (c) g(x)=sqrt(1-x^2) (d) g(x)=-sqrt(1-x^2) g(x)=sqrt(1+x^2)

Let f(x) be a real valued function such that the area of an equilateral triangle with two of its vertices at (0, 0) and (x, f(x)) is (sqrt(3))/(4) square units. Then f(x) is given by

Let f(x) be a real valued function such that the area of an equilateral triangle with two of its vertices at (0, 0) and (x, f(x)) is (sqrt(3))/(4) square units. Then f(x) is given by

Let f(x) be a real valued function such that the area of an equilateral triangle with two of its vertices at (0, 0) and (x, f(x)) is (sqrt(3))/(4) square units. Then The domain of the function is

Let f(x) be a real valued function such that the area of an equilateral triangle with two of its vertices at (0, 0) and (x, f(x)) is (sqrt(3))/(4) square units. Then The domain of the function is