Home
Class 11
MATHS
If A, B and C are the angles of a triang...

If A, B and C are the angles of a triangle and
`|(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0`, then the triangle ABC is

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(2)B+ sin^(2)C = sin^(2)A , then the triangle ABC is-

If A,B, and C are the angles of a triangle and |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C)|=0, then triangle ABC is a)Isosceles b)Equilateral c)Right - angled d)None of these

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinCsin^(2)C):}| =0 then Delta ABC must be .

If A, B and C are the angles of a triangle and |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then the triangle must be :

If in a triangle ABC, |{:(1, sin A ,sin^(2)A),(1,sin B , sin^(2)B),(1, sin C, sin^(2)C):}|= 0 then the triangle is

det [[1,1,1sin A, sin B, sin Csin ^ (2) A, sin ^ (2) B, sin ^ (2) C]] =

det[[ In Delta ABC, if ,1,11+sin A,1+sin B,1+sin Csin A+sin^(2)B,sin B+sin^(2)C,sin C+sin^(2)A]]