Home
Class 12
MATHS
y=e^(sinx)+(tanx)^(x)...

`y=e^(sinx)+(tanx)^(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

y = x^(sinx).(tanx)^(x)

Differentiate the following w.r.t. x: e^(sinx) + (tanx)^x

y=(sinx)^(tanx)+(cosx)^(secx)

u=(sinx)^(tanx) , v=(cosx)^(secx) Find dy//dx . if y=(sinx)^(tanx)+(cosx)^(secx)

Find the derivative: y = (sinx)^(tanx)+(cosx)^(secx)

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

If y=(sinx)^(tanx),then(dy)/(dx) is equal to

If y=(sinx)^(tanx),then(dy)/(dx) is equal to

If y=(e^(x)-tanx)/(x^(n)+cotx) , then find (dy)/(dx)