Home
Class 11
MATHS
Let Z1=2-I and Z2 =-2 + i Find the imag...

Let `Z_1=2-I ` and `Z_2 =-2 + i` Find the imaginary part of ` (1)/( Z_1Z_2) `solve =`sqrt 5x^(2) +x+ sqrt( 5) =0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(1)=2-i, z_(2)=-2+i . Find the imaginary part of (1)/(z_(1)bar(z_(2)))

Let z _(1) = 1 + i sqrt3 and z _(2) = 1 + i, then arg ((z _(1))/( z _(2))) is

Let z_1 = 2 -i, z_2 = -2 + i . Find Im(1/(z_1barz_1))

Let z_1=2- 3i and z_2= 5 + 12i , verify that : |z_2-z_1| >|z_2|-|z_1| .

Let z_1=2- 3i and z_2= 5 + 12i , verify that : |z_1+z_2| <|z_1|+|z_2| .

Let z_1 = 2 -i, z_2 = -2 + i . Find Re((z_1z_2)/barz_1)

Let z_1 =2-i, z_2 = -2 +i, find Re[ frac{z_1 z_2}{z_1} ]

Let z_1=2-i, z_2=-2+i . Find Im (1/(z_1overlinez_1))

If z_(1) = 6 + 9i and z_(2) = 5 + 2i then find z_(1)/z_(2)