Home
Class 9
MATHS
If a=x y^(p-1),\ b=x y^(q-1) and c=x y^(...

If `a=x y^(p-1),\ b=x y^(q-1)` and `c=x y^(r-1)` , prove that `a^(q-r)b^(r-p)\ c^(p-q)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=xy^(p-1),b=xy^(q-1) and c=xy^(r-1) prove that a^(q-r)b^(r-p)c^(p-q)=1

If a=xy^(p-1),b=xy^(q-1) and c=xy^(r-1) prove that a^(q-r)b^(r-p)c^(p-q)=1

(2) If a=x^(q+r)*y^(p) , b=x^(r+p)*y^(q) , c=x^(p+q)y^(r) , show that a^(q-r)b^(r-p)c^(p-q)=1

If a=xy^(p-1),b=yz^(q-1),c=zx^(r-1) , then a^(q-r)b^(r-p)c^(p-q) is equal to

If p, q, r are in A.P. while x, y, z are in G.P., prove that x^(q-r).y^(r-p).z^(p-q) =1 .

If (log x)/(q-r)=(log y)/(r-p)=(log z)/(p-q) prove that x^(q+r)*y^(r+p)*z^(p+q)=x^(p)*y^(q).z^(r)

If p,q,r are in A.P. while x,y,z are in G.P., prove that x^(q-r)y^(r-p)z^(p-q)=1

If x,y,z are in G.P and p,q,r are in A.P then prove that x^(q-r) y^(r-p) z^(p-q)=1 .

(b) If (log a)/(q-r)=(log b)/(r-p)=(log c)/(p-q) , prove that a^(p)b^(q)c^(r)=1

If (log a)/(q-r)=(log b)/(r-p)=(log c)/(p-q) prove that a^(p)b^(q)c^(r)=1