Home
Class 12
MATHS
if a=xy^(p-1),b=xy^(q-1),c=xy^(r-1) show...

if `a=xy^(p-1),b=xy^(q-1),c=xy^(r-1)` show that `a^(q-r).b^(r-p).c^(p-q)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=xy^(p-1),b=xy^(q-1) and c=xy^(r-1) prove that a^(q-r)b^(r-p)c^(p-q)=1

If a=xy^(p-1),b=xy^(q-1) and c=xy^(r-1) prove that a^(q-r)b^(r-p)c^(p-q)=1

If a=xy^(p-1),b=yz^(q-1),c=zx^(r-1) , then a^(q-r)b^(r-p)c^(p-q) is equal to

If a=x y^(p-1),\ b=x y^(q-1) and c=x y^(r-1) , prove that a^(q-r)b^(r-p)\ c^(p-q)=1

(2) If a=x^(q+r)*y^(p) , b=x^(r+p)*y^(q) , c=x^(p+q)y^(r) , show that a^(q-r)b^(r-p)c^(p-q)=1

If the p^th , q^th and r^th terms of a GP are a,b,c respectively, show that a^(q-r)b^(r-p)c^(p-q)=1

If the pth, qth and rth terms of a G.P. are a,b and c, respectively. Prove that a^(q-r)b^(r-p)c^(p-q)=1 .

If the p^(t h) , q^(t h) and r^(t h) terms of a GP are a, b and c, respectively. Prove that a^(q-r)b^(r-p)c^(p-q)=1 .

If the pth,qth,rth terms of a G.P. be a,b,c ,c respectively,prove that a^(q-r)b^(r-p)c^(p-q)=1

If a, b, c, be respectively the pth, qth and rth terms of a G.P., prove that a^(q-r).b^(r-p).c^(p-q) = 1