Home
Class 12
MATHS
Simply {(a^m)^(m-1/m)}^(1/(m+1))...

Simply
`{(a^m)^(m-1/m)}^(1/(m+1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the (m-1)^(th)" root of "[(a^(m))^(m)-(1/m)]^(1/(m+1)) ?

a^(m)=1/(a^(-m))

The coefficient of x^m in (1+x)^m +(1+m)^(m+1) +...+(1+x)^n ,m≤n is

The coefficient of x^m in (1+x)^m +(1+m)^(m+1) +...+(1+x)^n ,m≤n is

The nth terms of an A.P. (1)/(m),(m+1)/(m),(2m+1)/(m),... is:

Evaluate : ( m^( 1/2 ) times m^( 1/4 ) times m^( 1/4 ) )/ ( m^(1/4 ) times m^( 1/4 ) times 1/( m^(1/16 )) )

If quad cos A=m cos B, then (cot(A+B))/(2)(cos(B-A))/(2)a*(m-1)/(m+1) b.(m+2)/(m-2) c.(m+1)/(m-1)d .none of these

If 2^(-m)xx(1)/(2^(m))=(1)/(4) then (1)/(14)[(4^(m))^(1//2)+((1)/(5^(m)))^(-1)] =_______

lim_(n rarr oo) {(1^(m)+2^(m)+3^(m)+…….+n^(m))/(n^(m+1))} equals