Home
Class 11
MATHS
The domain of the function f(x)=sqrt(log...

The domain of the function `f(x)=sqrt(log(1/(|sinx|)))` `R-{-pi,pi}` (b) `R-{npi|npiZ}` `R-{2npi|n in z}` (d) `(-oo,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(log(1/(|sinx|))) (a) R-{-pi,pi} (b) R-{npi|npiZ} (c) R-{2npi|n in z} (d) (-oo,oo)

The domain of the function f(x)=sqrt(log(1/(|sinx|))) (a) R-{-pi,pi} (b) R-{npi|npiZ} (c) R-{2npi|n in z} (d) (-oo,oo)

The domain of the function f(x)=sqrt(log(1/(|sinx|))) (a) R-{-pi,pi} (b) R-{npi|npiZ} (c) R-{2npi|n in z} (d) (-oo,oo)

The domain of the function f(x)=sqrt(log((1)/(|sin x|))(a)R-{-pi,pi}(b))R-{n pi|n pi Z}(c)R-{2n pi|n in z}(d)(-oo,oo)

The domain of f (x) = sqrt (log ((1)/(| sin x |))) is (i) (-oo, oo) (ii) R-{(n pi)/(2): n in Z} (iii) R-{(n pi): n in Z} (iv) R-{(n pi)+(-1)^(n) ((pi)/(2)): n in Z }

The domain of definition of the function f(x)="log"|x| is R b. (-oo,0) c. (0,oo) d. R-{0}

The domain of definition of the function f(x)="log"|x| is a. R b. (-oo,0) c. (0,oo) d. R-{0}

The domain of definition of the function f(x)=sqrt(-cosx)+sqrt(sinx) is: [2npi,2npi+pi/2],n in I b. [2npi,(2n+1)pi],n in I c. [2n+1/2pi(2n+1)pi],n in I d. [(2n+1)pi,(2n+3/2)pi],n in I

The function f(x)=tanx is discontinuous on the set {npi; n in Z} (b) {2npin in Z} {(2n+1)pi/2: n in Z} (d) {(npi)/2: n in Z}

The domain of definition of f(x)=((log)_(2)(x+3))/(x^(2)+3x+2) is R-{-1,-2} (b) (-2,oo)R-{-1,-2,-3}(d)(-3,oo)-{-1,-2}