Home
Class 11
MATHS
" If "f(x)=(x)/(1+x tan x),x in(0,(pi)/(...

" If "f(x)=(x)/(1+x tan x),x in(0,(pi)/(2))," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = (x)/(1 + x tan x), x in (0, (pi)/(2)) then a)f(x) has exactly one point of minima b)f(x) has exactly one point of maxima c)f(x) is increasing in (0, (pi)/(2)) . d)f(x) is decreasing in (0, (pi)/(2)) .

Discuss the extrema of f(x)=(x)/(1+x tan x),x in(0,(pi)/(2))

Discuss maxima/minima of f(x) = (x)/(1 + x tan x), x in (0, (pi)/(2))

Discuss maxima/minima of f(x) = (x)/(1 + x tan x), x in (0, (pi)/(2))

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

Range of f(x)=(sec x+tan x-1)/(tan x-sec x+1)x in(0,(pi)/(2))

f(x)=Minimum{tan x,cot x}AA x in(0,(pi)/(2)) Then int_(0)^((pi)/(3))f(x)dx is equal to

If f(x) = (1 - x) tan (pi x)/(2) then "limit"_(x->1) f(x) is equal to :