Home
Class 9
MATHS
In a quadrilateral ABCD, show that (AB+...

In a quadrilateral ABCD, show that `(AB+BC+CD+DA)lt2(BD+AC).`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a quadrilateral ABCD, show that (AB+BC+CD+DA)gt(AC+BD) .

Show that in a quandrilateral ABCD, AB + BC + CD+ DA lt 2 (BD+AC) .

In a quadrilateral ABCD, prove that : (i) AB+BC+CD gt DA (ii) AB+BC+CD+DA gt 2AC (iii) AB+BC+CD+DA gt 2BD

If a circle touches all the sides of the quadrilateral ABCD,then show that AB+CD=BC+DA.

The given figure shows a quadrilateral ABCD. Prove that : AB+BC+CD+DA gt AC+BD

The given figure shows a quadrilateral ABCD. Prove that : AB+BC+CD+DA gt AC+BD

In quadrilatcal ABCD,prove that AB+BC+CD+AD<2(BD+AC)

Show that in a quadrilateral ABCD AB+BC+CD+DA lt 2 (BD + AC)

Show that in a quadrilateral ABCD ,AB+BC+CD+DA lt 2 (BD + AC)

ABCD is a quadri,aterial prove that (AB+BC+CD+DA)gt(AC+BD)