Home
Class 12
MATHS
I f1+r+r^2++r^n=(1+r)(1+r)r^2)(1+r^4)......

`I f1+r+r^2++r^n=(1+r)(1+r)r^2)(1+r^4)...... (1+r^(128))t h e n`

Promotional Banner

Similar Questions

Explore conceptually related problems

If1+r+r^(2)++r^(n)=(1+r)(1+r)r^(2))(1+r^(4))......(1+r^(128)) then

1+r+r^(2)+.......+r^(n)=(1+r)(1+r^(2))(1+r^(4))(1+r^(8)) then find n

If (1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^(128))=underset(r=0)overset(n)suma^(r ) , then n is equal to

If (1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^(128))=sum_(r=0)^(n) a^(r ) , then n is equal to

The r^(th) term t_(r) of a series is given by t_(r)=(r)/(r^(4)+r^(2)+1) then lim_(n to oo) overset(n) underset(r=1) sum t_(r)=

Let r^(th) term t _(r) of a series if given by t _(c ) = (r )/(1+r^(2) + r^(4)) . Then lim _(n to oo) sum _(r =1) ^(n) t _(r) is equal to :

If sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26) , then n equal to

If sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26), then n is equal to

If sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26) , then n equal to

If sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26) , then n equal to