Home
Class 12
MATHS
If z=costheta+isintheta, then (z^(2n)-1)...

If `z=costheta+isintheta`, then `(z^(2n)-1)/(z^(2n)+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=(costheta+isintheta) , show that z^(n)+(1)//(z^(n))=2cosntheta and z^(n)-(1)(z^(n))=2isinntheta

If z=costheta+isintheta then find (1+z)/(1-z)

If z= costheta+isintheta , then the value of (z^(2n)-1)/(z^(2n)+1) (A) i tan n theta (B) tan n theta (C) icot n theta (D) -i tan n theta

If z+1//z=2costheta, prove that |(z^(2n)-1)//(z^(2n)+1)|=|tanntheta|

If z+1/z=2cos theta, prove that |(z^(2n)-1)/(z^(2n)+1)|=|tan n theta|

If z + 1/z = 2costheta, prove that |(z^(2n)-1)//(z^(2n)+1)|=|tanntheta|

If z + 1/z = 2costheta, prove that |(z^(2n)-1)//(z^(2n)+1)|=|tanntheta|

choose the correct pair of statement : (i) (costheta+isintheta)^(n)=cosntheta+isinntheta , x is an integer (ii) (sintheta+icostheta)^(n)=sinntheta+icosthetantheta , n is an integer (iii) If z=costheta+isintheta , then z^(-1)=costheta-isintheta (iv)(z+barz)/(2)=Re(z)