Home
Class 10
MATHS
Prove that : sin^(6)A+cos^(6)A+3sin^(2...

Prove that : `sin^(6)A+cos^(6)A+3sin^(2)Acos^(2)A=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(6)A + cos^(6)A + 3sin^(2)A.cos^(2)A=

sin^(6)A+cos^(6)A+3sin^(2)A cos^(2)A=0 b.1c2d.3

Prove that sin^(6)x + cos^(6)x = 1 - 3 sin^(2) x cos^(2)x .

Prove the following identities: sin^(6)A+cos^(6)A=1-3sin^(2)A cos^(2)A

sin^6A+cos^6A+3sin^2A.cos^2A=

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

Prove that, sin^(6)x + cos^(6)x = 1-3/4 sin^(2) 2x.

Prove that sin^(6)theta+cos^(6)theta+3sin^(2)thetacos^(2)theta=1

Prove that 2 (sin ^ (6) A + cos ^ (6) A) -3 (sin ^ (4) A + cos ^ (4) A) + 1 = 0