Similar Questions
Explore conceptually related problems
Recommended Questions
- If I(n)=int (logx)^(n)dx, then the value of (I(n)+nI(n-1)) is -
Text Solution
|
- If In=int( lnx)^n dx then In+nI(n-1)
Text Solution
|
- If I(n)=int sin^(n)x backslash dx, then nI(n)-(n-1)I(n-2) equals
Text Solution
|
- If =int(1)^(e) (logx)^(n) dx, "then"I(n)+nI(n-1) is equal to
Text Solution
|
- If I(n)=int cos^(n)xdx, then (n+1)I(n+1)-nI(n-1)=
Text Solution
|
- If I(n)=int(logx)^(n)dx for all n epsilon N, I(n)+nI(n-1)=
Text Solution
|
- If I(n)=int (logx)^(n)dx, then the value of (I(n)+nI(n-1)) is -
Text Solution
|
- If I(n)= int (log x)^(n)dx then I(n)+nI(n-1)=
Text Solution
|
- If I(n) = int sin^(n)x dx, then nI(n)-(n-1)I(n-2)=
Text Solution
|