Home
Class 12
MATHS
If I(n)=int (logx)^(n)dx, then the valu...

If `I_(n)=int (logx)^(n)dx`, then the value of `(I_(n)+nI_(n-1))` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int(sin nx)/(sin x)dx, for n>1, then the value of I_(n)-I_(n-2) is

If n in N and I_(n) = int(log x)^(n) dx , then I_(n)+nI_(n-1) =

If n in N and I_(n) = int (log x)^(n) dx , then I_(n) + n I_(n - 1) =

If I_(n)=int(logx)^(n)dx for all n epsilon N, I_(n)+nI_(n-1)=

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

Let I_(n) =int _(1) ^(e^(2))(ln x)^(n) dx (x ^(2)), then the value of 3I_(n)+nI_(n-1) equals to:

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is

Obtain reduction formula for If I_(n)=int (log x) ^(n)dx, then show that I_(n) =x (log x)^(n) -nI_(n-1), and hence field int (log x) ^(4) dx.

If I_(m,n)=int x^(m)(logx)^(n)dx then I_(m.n)=

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is