Home
Class 12
MATHS
Let L= lim(x->0) (a-(a^3-x^3)^(1//3) - x...

Let `L= lim_(x->0) (a-(a^3-x^3)^(1//3) - x^3/108)/(x^6); a>0` If L is finite, then `L` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let L=lim_ (x to 0) (a-sqrt(a^2-x^2)-(x^2)/4)/(x^4), a > 0. If L is finite ,then (a). a=2 (b) a=1 L=1/(64) (d) L=1/(32)

Let L=lim_(xto0) (a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),agt0 . If L is finite, then

Let L=lim_(x->0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0 . If L is finite ,then (a) a=2 (b) a=1 (c) L=1/(64) (d) L=1/(32)

Let L=lim_(x->0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0 . If L is finite ,then (a) a=2 (b) a=1 (c) L=1/(64) (d) L=1/(32)

Let L= lim_(x rarr0)(a-sqrt(a^2-x^2)-x^2/4)/x^4, a gt 0 . If L is finite, then

Let L=lim_(x rarr0)(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a>0 .If L is finite,then (a)a=2( b) a=1(c)L=(1)/(64) (d) L=(1)/(32)

Let L=lim_(x rarr0)(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a>0. If L