Home
Class 12
MATHS
In a triangle ABC cosA+cosB+cosC<=k then...

In a triangle `ABC cosA+cosB+cosC<=k` then `k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If in triangle ABC cosA+cosB+cosC=3/2 then prove that triangle is equilateral

In a triangle ABC, cosecA (sinB cosC + cosB sinC) is :

In a triangle ABC, (cosB+cosC)/(1-cosA) =

In triangle ABC, if cosA+2cosB+cosC=2,t h e na ,b ,c are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

In triangle ABC, if cosA+2cosB+cosC=2,t h e na ,b ,c are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

In triangleABC , If cosA+cosB+cosC=(3)/(2) , then the triangle is

In any triangle ABC, sinA -cosB=cosC , then angle B is

If in a Delta ABC, cosA+ cosB + cosC =3/2. Prove that DeltaABC is an equilateral triangle.

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is