Home
Class 11
MATHS
((x-1)(x+2)^2)/(-1-x)<0...

`((x-1)(x+2)^2)/(-1-x)<0`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-2)^(2),(x-1)^(2),x^(2)(x-1)^(2),x^(2),(x+1)^(2)x^(2),(x+1)^(2),(x+2)^(2)]|=-8

(x-2)^(2),(x-1)^(2),x^(2)(x-1)^(2),x^(2),(x+1)^(2)x^(2),(x+1)^(2),(x+2)^(2)]|=

The coefficient of x^(49) in the expansion of (x-1)(x-(1)/(2))(x-(1)/(2^(2)))......*(x+(1)/(2^(49))) is equal to

Solve for x: (1)/(x-2)+(2)/(x-1)=(6)/(x) ,x ne 0,1,2

The value of (x-1)/(x+1)+(x^(2)-1)/(2(x+1)^(2))+(x^(3)-1)/(3(x+1)^(2))+......oo equals

The sum of the 10 terms of the series (x+(1)/(x))^(2)+(x^(2)+(1)/(x^(2)))^(2)+(x^(3)+(1)/(x^(3)))^(2)+

Using the properties of determinants, prove the following |{:((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2):}|=-8

|[(x-2)^(2), (x-1)^(2), x^(2)], [(x-1)^(2), x^(2), (x+1)^(2)],[x^(2), (x+1)^(2), (x+2)^(2)]|+P^(3)=0 the value of P is

For x>0 the sum of the series (1)/(1+x)-(1-x)/((1+x)^(2))+((1-x)^(2))/((1+x)^(3))-...oo is equal to