Home
Class 12
MATHS
If y=e^(tanx)," then "(cos^(2)x)d^(2)/(d...

If `y=e^(tanx)," then "(cos^(2)x)d^(2)/(dx^(2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(tan x) , then cos^2 x(d^2y)/(dx^2) is equal to

If y=x+tanx , show that cos^(2)x(d^(2)y)/(dx^(2))-2y+2x=0 .

"If "y= cos x +e^(4x)," then "(d^(2)y)/(dx^(2))=

If y= e^(tan x) then show that, (cos^(2)x) (d^(2)y)/(dx^(2))- (1+ sin 2x) (dy)/(dx)=0

y=x+e^(x), then (d^(2)y)/(dx^(2))=

If y=e^(2x) , then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to

If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

If y=e^(tanx) , then (cos^2x)y2-(1+sin2x)y1=0