Home
Class 11
MATHS
" If "bar(a),bar(b),bar(c)" are unit vec...

" If "bar(a),bar(b),bar(c)" are unit vector then "|bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)" does not exceed "

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 , then |2bar(a)+5bar(b)+5bar(c)| =

bar(a),bar(b) and bar( c ) are unit vectors. The value of |bar(a)-bar(b)|^(2)+|bar(b)-bar( c )|^(2)+|bar( c )-bar(a)|^(2) is not expected ………………

Suppose bar(a), bar(b), bar(c) be three unit vectors such that |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2) is equal to 3 . If bar(a), bar(b), bar(c) are equally inclined to each other at an angle:

bar(a),bar(b) and bar(c) are unit vectors satisfying |bar(a)-bar(b)|^(2)+|bar(b)-bar(c)|^(2)+|bar(c)-bar(a)|^(2)=9 then |2bar(a)+5bar(b)+5bar(c)|=

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

If bar(a),bar(b) and bar(c) are mutually perpendicular vectors then [bar(a)bar(b)bar(c)]=

If bar(a),bar(b),bar(c ) are mutually perpendicular unit vectors, then find [bar(a)bar(b)bar(c )]^(2) .

If the unit vectors bar(a),bar(b) and bar( c ) are coplanar then [2bar(a)-bar(b),2bar(b)-bar( c ),2bar( c )-bar(a)] = ……

If bar(a),bar(b),bar(c) are any three vectors, prove that (1) [bar(a)+bar(b)" "bar(a)+bar(c)" "bar(b)]=[bar(a)" "bar(c)" "bar(b)] (2) [bar(a)-bar(b)" "bar(b)-bar(c)" "bar(c)-bar(a)]=0 .