Home
Class 11
MATHS
The derivative of y=(1-x)(2-x)....(n-x) ...

The derivative of `y=(1-x)(2-x)....(n-x) ` at ` x=1` is (a)`0` (b) `(-1)(n-1)!` (c)`n !-1` (d) `(-1)^(n-1)(n-1)!`

Promotional Banner

Similar Questions

Explore conceptually related problems

The coefficient of 1/x in the expansion of (1+x)^(n)(1+1/x)^(n) is (n!)/((n-1)!(n+1)!) b.((2n)!)/((n-1)!(n+1)!) c.((2n-1)!(2n+1)!)/((2n-1)!(2n+1)!) d.none of these

(d^n)/(dx^n)(logx)= ((n-1)!)/(x^n) (b) (n !)/(x^n) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

(d^n)/(dx^n)(logx)=? (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

(d^n)/(dx^n)(logx)= (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

(d^n)/(dx^n)(logx)=? (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (a). (n !)/((n-1)!(n+1)!) (b). ((2n)!)/((n-1)!(n+1)!) (c). ((2n)!)/((2n-1)!(2n+1)!) (d). none of these

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (a). (n !)/((n-1)!(n+1)!) (b). ((2n)!)/((n-1)!(n+1)!) (c). ((2n)!)/((2n-1)!(2n+1)!) (d). none of these

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (a). (n !)/((n-1)!(n+1)!) (b). ((2n)!)/((n-1)!(n+1)!) (c). ((2n)!)/((2n-1)!(2n+1)!) (d). none of these

If y=(1+1/x)(1+2/x)(1+3/x)…(1+n/x) and x ne 0," then "(dy)/(dx) when x = -1 is :a)n! b) (n-1)! c) (-1)^(n)(n-1)! d) (-1)^(n)n!