Home
Class 12
MATHS
यदि x=sin^(-1)((2t)/(1+t^(2))) और y=tan^...

यदि `x=sin^(-1)((2t)/(1+t^(2)))` और `y=tan^(-1)((2t)/(1-t^(2)))` तब दर्शाइये कि `dy/dx =1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sin^(-1)((2t)/(1+t^(2))) and y=tan^(-1)((2t)/(1-t^(2))),-1

If x=sin^(-1)((2t)/(1+t^2))"and"y=tan^(-1)((2t)/(1-t^2)),-1

If x=sin^(-1)((2t)/(1+t^(2))) and y=tan^(-1)((2t)/(1-t^(2))),t>1. Prove that (dy)/(dx)=-1

If x=sin^(-1)((2t)/(1+t^(2)))andy=tan^(-1)((2t)/(1-t^(2))), then prove that (dy)/(dx)=1 .

If x=sin^(-1)((2t)/(1+t^(2)))andy=tan^(-1)((2t)/(1-t^(2))), then prove that (dy)/(dx)=1 .

If x=sin^(-1)((2t)/(1+t^2)) and y= tan^(-1)((2t)/(1-t^2)),t > 1 . Prove that dy/dx=-1

If x=sin^(-1)((2t)/(1+t^2)) and y= tan^(-1)((2t)/(1-t^2)),t > 1 . Prove that dy/dx=-1

If x = sin^(-1) ((2t)/( 1 + t^(2) )) and y= tan^(-1) ((2t)/( 1-t^(2) )), t gt 1 prove that (dy)/(dx) = 1 .

If x=sin^(-1)[(2t)/(1+t^2)]'and'y=tan^(-1)((2t)/(1-t^2)), prove that dy/dx=1'.

If x=sin^(-1)((2t)/(1+t^2))a n d \ y=tan^(-1)((2t)/(1-t^2)),t > 1. P rov e \ t h a t(dy)/(dx)=-1