Home
Class 12
MATHS
Prove that: |1a a^2-b c1bb^2-c a1cc^2-a ...

Prove that: `|1a a^2-b c1bb^2-c a1cc^2-a b|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|= 0

Prove that det[[1,a,a^(2)-bc1,b,b^(2)-ca1,c,c^(2)-ab]]=0

Prove that . |[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|=0

Prove that: {:|(1,a, a^2-bc), (1,b,b^2-ca),(1,c,c^2-ab)|:}=0

Without expanding, show that the value of each of the determinants is zero: |1/a a^2b c a/bb^2a c a/cc^2a b|

Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0 .

Without expanding, show that the value of each of the following determinants is zero: |1//a , a^2b c1//bb^2a c1//cc^2a b| (ii) |a+b2a+b3a+b2a+b3a+b4a+b4a+b5a+b6a+b| (iii) |1a a^2 1bb^2 1cc^2\ \ \ -b c-a c-a b|

By using properties of determinants. Show that: (i) |1a a^2 1bb^2 1cc^2|=(a-b)(b-c)(c-a) (ii) |1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c)

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)