Home
Class 8
MATHS
" Hind "A" is acute,then "(sqrt(1+sin2A)...

" Hind "A" is acute,then "(sqrt(1+sin2A)+sqrt(1-sin2A))/(sqrt(1+sin2A)-sqrt(1-sin2A))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If |tanA|<1 and |A| is acute, then (sqrt(1+sin2A)+(sqrt(1-sin2A)))/(sqrt(1+sin2A)-(sqrt(1-sin2A))) is equal to

If |tanA|lt1and |A| is acute, then (sqrt(1+sin2A)+sqrt(1-sin2A))/(sqrt(1+sin2A)-sqrt(1-sin2A)) is equal to

(sqrt(1+sin2A)+sqrt(1-sin2A))/(sqrt(1+sin2A)-sqrt(1-sin2A)) If |tan A|<1 and |AI

Find the value of (sqrt(1+sin 2A)+sqrt(1-sin 2 A))/(sqrt(1 + sin 2A)-sqrt(1-sin 2 A)) , When |tan A| lt 1 and |A| is acute.

If -(pi)/(4)lt A lt (pi)/(4) , then (sqrt(1+sin 2 A)+sqrt(1-sin 2 A))/(sqrt(1+sin 2 A)-sqrt(1-sin 2 A)) is equal to

Find the value of (sqrt((1+sin 2A))+sqrt(1-sin 2A))/(sqrt(1+sin 2A)-sqrt(1-sin 2A) when abs(tanA)lt1 and absA is acute.

(cot^(-1){sqrt(1+sin x)+sqrt(1-sin x)})/(sqrt(1+sin x)-sqrt(1-sin x))

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)