Home
Class 12
MATHS
मान लीजिये sin (A+B) तथा sin(A-B)=1/2...

मान लीजिये `sin (A+B)` तथा ` sin(A-B)=1/2`, जहाँ ` A,B in [ 0,pi/2]` तब
` tan (A+2B)* tan(2A+B)` किसके बराबर है ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Let sin (A+B) = 1 and sin (A-B) = 1//2 where AB epsilon[0,(pi)/(2)] . What is the value of tan (A+2B). tan(2A+B)?

If sin(A + B) = 1 and 2 sin (A - B) = 1, where 0 lt A, B lt pi/2 then what is tan A:tan B equal to?

If cos(A+B) = 0 and sin(A-B) = 1/2, then the value of B is: (Given 0^@ यदि cos(A+B) = 0 और sin(A-B) = 1/2, B का मान है:

(sin2A + sin2B) / (sin2A-sin2B) = (tan (A + B)) / (tan (AB))

If tan(A +B) = 3tan A "and" sin2(A + B) + sin 2 B = K sin 2 B,"then K is"-

(sin ^ (2) A-sin ^ (2) B) / (sin A cos A-sin B cos B) = tan (A + B)

If sin A : sin B : sin C = 3: 4: 5 then tan ""(A)/(2) : tan ""(B)/(2) : tan "" (C ) /(2) =

If tan (A+B) = 3 tan A , "show that" sin (2A +2B) + sin 2A = 2 sin 2 B

If tan A = (sin B)/(1 - cos B) ,then find the value of tan 2A .

(sin^2A- sin^2B)/( sin A cos A-sin Bcos B) = .............. A) tan (A-B) B) tan (A+B) C) cot (A-B) D) cot (A+B)