Home
Class 12
MATHS
If A+B+C=(3pi)/(2), then show that cos 2...

If `A+B+C=(3pi)/(2)`, then show that `cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=(pi)/(2) , then prove that cos 2A + cos 2B + cos 2C=1+4 sin A sin B sin C .

If A+B+C=(3pi)/(2), prove that cos 2A+ cos 2B+ cos 2C=1-4 sin A sin B sin C .

cos2B + cos2A-cos2C = 1-4sin A sin B cos C

If A + B + C = (pi)/(2) , prove that cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B cos C

If A+B+C= (pi)/(2) , then show that sin 2A+sin 2B +sin 2C=4 cos A cos B cos C

If A + B + C =pi , prove that : cos 2A - cos 2B + cos 2C= 1-4 sin A cos B sin C .

If A + B + C =pi , prove that : cos 2A + cos 2B -cos 2C= 1-4sin A sin B cos C .

If A+B+C=270^(@), then the value of cos 2A +cos 2B + cos 2C + 4 sin A sin B sin C is-

If A + B + C =pi , prove that : cos 2A - cos 2B- cos 2C= -1+4 cos A sinB sin C .

If A+B+C=(3pi)/(2) , prove that cos ^(2)A+ cos ^(2) B- cos ^(2)C=-2 cos A cos B sin C.