Home
Class 12
MATHS
The limit underset( x rarr0 ) ( "lim") (...

The limit `underset( x rarr0 ) ( "lim") ( 1- cos `x sqrt( cos 2x)`)/( x^(2))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

underset( x rarr 0 ) ( "lim")( (1- cos 2x) ( 3 + cos x ))/( x tan 4x) is equal to :

lim_(x rarr0)(1-cos x sqrt(cos2x))/(x^(2))

underset( x rarr 0 ) ( "Lim") ((x- 1+ cos x )/( x))^((1)/( x))

underset(x rarr 0)(lim) (cos 4x - 4 cos 2x + 3)/(x^(4)) =

underset(x rarr 0)lim ((1-cos 2x) (3+cos x))/(x tan 4x) is equal to -

Evaluate : lim_(x rarr 0) (1-cosx sqrt(cos 2x))/(x^2) .

lim_(x rarr0)(sqrt(1-cos2x))/(2x) is equal to =

lim_(x rarr0)(1-cos x sqrt(cos2x))/((e^(x)^^2-1))

lim_(x rarr 0) (sqrt(1-cos 2x))/(sqrt(2)x) is :