Home
Class 12
MATHS
If f(x)=|x|^(|sinx|), then f'((pi)/(4)) ...

If `f(x)=|x|^(|sinx|)`, then `f'((pi)/(4))` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x|^(|sinx|) then f^1(-pi/4) is equal to

If f(x)=|cos x|, then f' ((3pi)/(4)) is equal to

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)