Home
Class 11
MATHS
The complex number z satisfying z+|z|=1+...

The complex number `z` satisfying `z+|z|=1+7i` then `|z|^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Modulus of nonzero complex number z satisfying barz +z=0 and |z|^2-4z i=z^2 is _________.

The complex number z satisfying |z+bar z|+|z-bar z|=2 and |iz-1|+|z-i|= 2 is/are A) i B) -i C) 1/i D) 1/(i^3)

The complex number z satisfying the equation |z-i|=|z+1|=1

The complex number z satisfying the equation |z-i|=|z+1|=1 is

The number of complex numbers z satisfying |z-2-i|=|z-8+i| and |z+3|=1 is

The number of complex numbers satisfying (1 + i)z = i|z|

Number of complex number z satisfying |z+2|+|z-2|=8 and |z-1|+|z+1|=2 , is ____________

The complex number z satisfies z+|z|=2+8i . find the value of |z|-8