Home
Class 12
MATHS
Find the values of 'a' for which, f(x)...

Find the values of 'a' for which,
`f(x)={(4x-x^(3)+log(a^(2)-3a+3)",",0lexlt3),(" "x-18",",xge3):}` , f(x) as a local minima at x=3 is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Let f(x)={:{(|x-3|+m^(2)-9m-9","ifxlt3),(2x-5"," if xge3):} Then, the complete set of values of m for which f(x) has a local minima at x=3 is

The value of a for which the function f(x)={(((4^x-1)^3)/(sin(x/a)log(1+x^2/3)) ,, x!=0),(12(log4)^3 ,, x=0):} may be continuous at x=0 is :

Find points of local maxima or minima of f(x) =x^(5)-5x^(4) +5x^(3)-1

Find the local maxima local minima of the function f(x) = x^3 -3x .

Find the local maxima and minima of the function f(x)=x^(3)-2x^(2)+x+6 .

Find the antiderivative of f(x) given by f'(x)=4x^(3)-(3)/(x^(4)) such that f(2)=0 .