Home
Class 12
MATHS
If y = e^(a cos^(-1)x), -1 le x le 1 sho...

If `y = e^(a cos^(-1)x), -1 le x le 1` show that `(1 - x)^(2) (d^2 y)/(dx^2) - x (dy)/(dx) - a^(2)y = 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= e^(cos^(-1)x), -1 le x le 1 , then prove that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)- y= 0

If y= e^(a sin^-1 x) , [-1le x le 1] then show that (1 -x^2) (d^2y) /(dx^2) - xdy/dx -a^2y =0 .

If y=e^(a cos^(-1)x)\ ,\ -1\ lt=xlt=1, show that (1-x^2)(d^2y)/(dx^2)-\ x(dy)/(dx)-\ a^2y=0

If y=e^(acos^(-1)x) , -1lt=xlt=1 , show that (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx)-a^2y=0 .

If y=e^(a cos^(-1)x),-1<=x<=1 then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^(asin^(-1)x)\ ,\ -1\ lt=x\ lt=1, then show that (1-x^2)\ (d^2\ y)/(dx^2)-\ x(dy)/(dx)-\ a^2y=0

If y=e^(acos^(-1)x), -1lt=xlt=1, show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-a^2y=0 .

If y=e^acos^((-1)x) , -1lt=xlt=1 , show that (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx)-a^2y=0 .

If y = e^(acos^-1x), -1lexle1 , show that (1-x^2)(d^2y)/dx^2 - x(dy/dx) - a^2y = 0