Home
Class 12
MATHS
If a=(1+i)/sqrt2," where "i=sqrt(-1), th...

If `a=(1+i)/sqrt2," where "i=sqrt(-1),` then find the value of `a^(1929)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=i^(i^(i)) where i=sqrt-1 then find the value of |z|

If z=(1+i)/(sqrt(2)), then the value of z^(1929) is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If z=(1+i)/(√2) , then the value of z^(1929) is

If z=(1+i)/sqrt2 , then the value of z^1929 is

If z_(1)=3i and z_(2)=-1-i , where i=sqrt(-1) find the value of arg ((z_(1))/(z_(2)))