Home
Class 11
MATHS
(2(x-3))/(x(x-6))lt=1/(x-1)...

`(2(x-3))/(x(x-6))lt=1/(x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(x^(3)), (1)/(x^(2)), (1)/(x), x ,x^(2),x^(3) If -1 lt x lt 0 , what is the median of the six numbers in the list above ?

Solve the following equations: 3x+17lt=2(1-x) + 2(2x+3)-10lt=6(x-2)

For x in (0,1) Prove that x-(x^(3))/(3) lt tan^(-1) x lt x -(x^(3))/(6) hence or otherwise find lim_( x to0) [(tan^(-1)x)/(x)]

Lt_(x rarr 0)(6^(x) - 3^(x) - 2^(x)+1)/(x^(2)) =

underset(x to 1)"Lt" (root3(x^(2))-2root3(x)+1)/((x-1)^(2))=

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}