Home
Class 12
PHYSICS
The angular velocity of a body is vec (...

The angular velocity of a body is ` vec (omega)- = 2 hat(i) + 3 hat(j) + 4 hat (k)` and torque `hat(tau) = hat(i) + 2 hat(j) + 3 hat(k)` acts on it. The rotational power will be

Promotional Banner

Similar Questions

Explore conceptually related problems

For a body, angular velocity (vec(omega)) = hat(i) - 2hat(j) + 3hat(k) and radius vector (vec(r )) = hat(i) + hat(j) + vec(k) , then its velocity is :

For a body, angular velocity (vec(omega)) = hat(i) - 2hat(j) + 3hat(k) and radius vector (vec(r )) = hat(i) + hat(j) + vec(k) , then its velocity is :

The angular velocity of a rotating body is vec omega = 4 hat i + hat j - 2 hat k . The linear velocity of the body whose position vector 2hati + 3 hat j - 3 hat k is

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

The torque of a force vec(F)=-2hat(i)+2hat(j)+3hat(k) acting on a point vec(r )=hat(i)-2hat(j)+hat(k) about origin will be

If vec(alpha ) = hat (i) - 2 hat (j) + 3 hat (k) , vec(beta) = 2 hat (i) - 3 hat (j) + hat(k) and vec(gamma) = 3 hat (i) + hat (j) - 2 hat (k) , find vec(alpha) . (vec(beta)xx vec (gamma)) .

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a). (vec(b)+vec(c)) = vec (a).vec(b) + vec (a).vec(c )