Home
Class 12
MATHS
[35." सिद्ध करें कि "int(0)^( pi/2)log c...

[35." सिद्ध करें कि "int_(0)^( pi/2)log cos xdx=(pi)/(2)log(1)/(2)],[" Prove that "int_(0)^( pi/2)log cos xdx=(pi)/(2)log(1)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)log(cosx)dx=

int_(0)^( pi)log xdx

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

int_(0)^((pi)/(2))log(cos x)dx=

int_(0)^(pi//2)log(sinx)dx=

Prove that : int_(0)^(pi//2) x . cot x dx =(pi)/(2)log 2

int_(0)^(pi//2)log(tanx)dx=

If int_(0)^((pi)/(2))logcosxdx=(pi)/(2)log((1)/(2)) , then int_(0)^((pi)/(2))logsecdx=

int_(0)^(pi)log(1+cosx)dx=-pi(log2)