Home
Class 9
MATHS
(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)...

`(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the product: (a-b-c)(a^(2)+b^(2)+c^(2)+ab+ac-bc)

If a+b+c=4 and a^(2)+b^(2)+c^(2)+3(ab+bc+ac)=21 where a, b, c in R then ab+bc+ca=

If (a^(2)-bc)/(a^(2) +bc) + (b^(2)-ac)/(b^(2) + ac) + (c^(2)-ab)/(c^(2)+ab)= 1 then find (a^(2))/(a^(2) + bc) + (b^(2))/(b^(2) + ac) + (c^(2))/(c^(2) +ab)= ?

|(b^(2)-ab,b-c,bc-ac),(ab-a^(2),a-b,b^(2)-ab),(bc-ac,c-a,ab-a^(2))|=

If |{:(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ac-b^(2)):}|=k(a^(3)+b^(3)+c^(3)-3abc)^(l) then the value of (k, l) is

Without expanding prove that [{:(b^(2)-ab,b-c,bc-ac),(ab-a^(2),a-b,b^(2)-ab),(bc-ac,c-a,ab-a^(2)):}]=0

Show that |(0,a,c),(a,0,b),(c,b,0)|^(2)=|(2ac,ab,bc),(ab,-a^(2),-ac+b^(2)),(bc,-ac+b^(2),-c^(2))|

Using properties of determinants, prove the following abs{:(a^2, bc, ac +c^2 ),(a^(2) + ab, b^(2),ac ),(ab, b^(2) + bc,c^(2) ):}=4a^(2) b^(2) c^(2) .