Home
Class 12
MATHS
" Solution of equation "tan(cos^(-1)x)=s...

" Solution of equation "tan(cos^(-1)x)=sin(cot^(-1)(1)/(2))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Slove: tan(cos^-1x)=sin(cot^-1""1/2)

The number of real solution of equation tan^(-1)x+cot^(-1)(-|x|)=2tan^(-1)(6x) is

The solution set of the equation tan^(-1)x-cot^(-1)x=cos^(-1)(2-x) is _____

Solve the following equation for x : "cos"(tan^(-1)x)=sin(cot^(-1)(3/4)) , tan(cos^(-1)x)=sin(cot^(-1)(1/2))

Solution(s) of the equation sin(-pi/3+tan^(-1)x+cot^(-1)x)=1/2 is/are

Solution(s) of the equation sin(-pi/3+tan^(-1)x+cot^(-1)x)=1/2 is/are

Let alpha is the solution of equation sin^(-1)(2sin^(-1)(cos^(-1)(tan^(-1)x)))=0 and beta is the solution of equation sin^(-1)x+sin^(-1)x^(2)=(pi)/(2), then -

If the solution of the equation sin(tan^(-1)x)=sqrt(4-(sin(cos^(-1)x)+cos(sin^(-1)x))^(2)) is a , then a=

Solve the following equation for x:cos(tan^(-1)x)=sin((cot^(-1)3)/(4))tan(cos^(-1)x)=sin((cot^(-1)1)/(2))

cos [ tan^(-1){sin (cot^(-1)x)}] =