Home
Class 12
MATHS
l(1)(((n)/(2)-cf)/(f))times h...

l_(1)(((n)/(2)-cf)/(f))times h

Promotional Banner

Similar Questions

Explore conceptually related problems

The following table shows the increase in height of 20 students in a year. Complete the activity to find the median increase in height : Here, (N)/(2)=10,cf=2,f=10,h=15. Median =L+[((N)/(2)-cf)/(f)]xxh" " ...... (Formula) =1.5+(square-2)/(10)xx1.5 =1.5+(square)/(10)xx1.5=1.5+square=square The median increase in height is 2.7 cm.

If L=-lim_(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^(2)+1))) , then the value of L^(4) is _____________.

If L= lim_(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^(2)+1))) , then the value of L^(4) is _____________. (a) -1/4 (b) 1/2 (c) 1 (d) none of the above

The value of lim_(x rarr 0) (l_(n) (1+2h) - 2l_(n) (1+h))/(h^(2)) is :

if f(x)=x^(n) then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)+--+((-1)^(n)f^(prime--n)xx(1))/(n!)

f(x)=(x)/(x-1) then (f(a))/(f(a+1)) is equal to a.f(-a) b.f(1/a) c.f(a^(2)) d.f (-(a)/(a-1))

If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) are d.c's of two lines then find the value of (l_(1)m_(2)-l_(2)m_(1))^(2)+(m_(1)n_(2)-n_(1)m_(2))^(2)+(n_(1)l_(2)-n_(2)l_(1))^(2)+(l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2))^(2)

If the direction cosines of two lines are l_(1), m_(1), n_(1) and l_(2), m_(2), n_(2) , then find the direction cosine of a line perpendicular to these lines. a) l_(1)+l_(2),m_(1)+m_(2),n_(1)+n_(2) b) l_(1)-l_(2),m_(1)-m_(2),n_(1)-n_(2) c) m_(1)n_(2)-m_(2)n_(1),n_(1)l_(2)-n_(2)l_(1),l_(1)m_(2)-l_(2)m_(1) d) l_(1)+2l_(2),m_(1)+2m_(2),n_(1)+2n_(2)

Median = l+[((n/2-cf))/f]xxh , where cf = ..........