Home
Class 12
MATHS
Prove that : Prove that C(0)+3.C(1)+3(...

Prove that : Prove that
`C_(0)+3.C_(1)+3_(2).C_(2)+……+3^(n).C_(n)=4^(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the C_(0)+2.C_(1)+4.C_(2)+8.C_(3)+…+2^(n).C_(n)=3^(n)

Prove that : C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0

Prove that : C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0

Prove that : C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0

Prove that following C_(0)+2.C_(1)+4.C_(2)+8.C_(3)+…+2^(n).C_(n)=3^(n)

Prove that C_(0)+3.C_(1)+5.C_(2)+….+(2n+1).C_(n)=(2n+2).2^(n-1).

Prove that : For n = 0, 1, 2, 3, ………., n, prove that C_(0).C_(r)+C_(1).C_(r+1)+C_(2).C_(r+2)+….+C_(n-r).C_(n) =""^(2n)C_((n+r)) and hence deduce that Prove that : C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+….+C_(n)^(2)=""^(2n)C_(n)

Prove that 3.C_0 + 6.C_1 + 12.C_2 + ………+3.2^n.C_n = 3^(n+1)

Prove that 3.C_0 + 6.C_1 + 12.C_2 + ………+3.2^n.C_n = 3^(n+1)

Prove that : Prove that (C_(1))/(C_(0))+2.(C_(2))/(C_(1))+3.(C_(3))/(C_(2))+….+n.(C_(n))/(C_(n-1))=(n(n+1))/(2)