Home
Class 12
MATHS
l veca . m vecb = lm(veca . vecb) and ve...

`l veca . m vecb = lm(veca . vecb)` and `veca . vecb = 0` then `veca` and `vecb` are perpendicular if `veca` and `vecb` are not null vector

Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca + vecb | =|veca - vecb | then show that veca and vecb are perpendicular .

If abs(veca+vecb)=abs(veca-vecb) prove that veca and vecb are perpendicular.

If |veca+vecb|=|veca-vecb| then show that veca and vecb are perpendicular.

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.

If |veca+vecb|= |veca-vecb| ,(where veca and vec b are any vector) then show that veca and vecb are perpendicular to each other.

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then: