Home
Class 12
MATHS
For f(x) =x^(4) +|x|, let I(1)= int (0)^...

For `f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx` and `I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2))` has the value equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then

If I_(1)=int_(0)^(pi//2)f(sin2x)sin x dx and I_(2)=int_(0)^(pi//4)f(cos2x)cosx dx , then I_(1)//I_(2) is equal to

Prove the equality int_(0)^(pi) f (sin x) dx = 2 int_(0)^(pi//2) f (sin x) dx

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

If I_(1)=int_((Q)/(2))^((pi)/(2))f(sin x)sin xdx and I_(2)=int_(0)^((pi)/(2))f(cos x)cos xdx th len(I_(1))/(I_(2))

Let I_(1) =int_(a)^(pi-a)xf(sinx)dx,I_(2)=int_(a)^(pi-a)f(sinx)dx , then I_(2) is equal to

If int_(0)^(pi) x f (sin x) dx = A int _(0)^(pi//2) f(sin x) dx , then A is equal to