Home
Class 12
MATHS
The angles of triangle, two of whose ...

The angles of triangle, two of whose sides are represented by vectors `sqrt(3)( hat axx vec ba n d hat b-( hat adot hat b) hat a ,w h e r e vec b)` is a non zero vector and ` hat a` is unit vector in the direction of ` vec a ,` are `tan^(-1)(sqrt(3))` b. `tan^(-1)(1//sqrt(3))` c. `cot^(-1)(0)` d. `tan^(-1)(1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The angles of triangle, two of whose sides are represented by vectors sqrt(3)( vec axx vec b) \a n d \ vec b-( hat adot vec b) hat a ,w h e r e vec b is a non zero vector and hat a is unit vector in the direction of vec a , are

The angles of triangle, two of whose sides are represented by vectors sqrt(3)( vec axx vec b) \a n d \ vec b-( hat adot vec b) hat a ,w h e r e vec b is a non zero vector and hat a is unit vector in the direction of vec a , are

The angles of triangle,two of whose sides are represented by vectors sqrt(3)(widehat a xxvec b and hat b-(widehat a*hat b)widehat a, where vec b) is a non zero vector and widehat a is unit vector in the direction of vec a, are tan^(-1)(sqrt(3)) b.tan^(-1)(1/sqrt(3)) c.cot^(-1)(0) d.tan^(-1)(1)

Writhe the value of ( vec adot hat i) hat i+( vec adot hat j) hat j+( vec adot hat k) hat k\ w h e r e\ vec a is any vector.

For given vectors vec a = 2 hat i - hat j + 2 hat k and vec b = - hat i + hat j - hat k , find the unit vector in the direction of the vector vec a + vec b .

For given vectors, vec a =2 hat i- hat j+2hat k and vec b =-hat i +hat j - hat k , find the unit vector in the direction of the vector vec a+ vec b .

vec a=hat i+hat j+hat k,vec b=hat i-hat j+hat k and vec c=hat i-hat j-hat k' be three vectors.A vector vec v in the plane of vec a and vec b. whose projection on vecc is (1)/(sqrt(3)), is given by

vec a=hat i+hat j+hat k,vec b=hat i-hat j+hat k and vec c=hat i-hat j-hat k be threevectors.A vector in the plane of vec a and vec b whose projectionon vec c is (1)/(sqrt(3)), is given by

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot